题目内容
【题目】如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于、两点,交抛物线的准线于点,其中,.过点作轴的垂线交抛物线于点,直线交抛物线于点.
(1)求的值;
(2)求四边形的面积的最小值.
【答案】(1);(2).
【解析】
(1)设直线的方程为,将该直线方程与抛物线的方程联立,消去,得到关于的二次方程,利用韦达定理结合可求出正数的值;
(2)由直线与坐标轴不垂直,所以设方程为,并设点,将直线的方程与抛物线的方程联立,列出韦达定理,并求出,求出点的坐标,可得出点的坐标,并可得出直线的方程,将该直线方程与抛物线的方程联立,利用韦达定理得出点的坐标,并分别计算出点、到直线的距离、,利用三角形的面积公式可得出关于的表达式,设,构造函数,利用导数求出函数的最小值,即可得出的最小值.
(1)设方程为,与联立,消去整理得,
所以,得(舍去)或;
(2)由(1)知抛物线方程为,,准线方程为.
因为直线与坐标轴不垂直,所以设方程为,,
由得,,,
所以,
令,则,所以,,
直线的方程为,由得,
所以,,代入,得,所以.
到直线的距离为,到直线的距离为,
所以四边形的面积,
令,则,令,则.
当时,,函数单调递减,
当时,,函数单调递增.
所以,当时,有最小值,
因此,四边形的面积的最小值为.
【题目】某网络购物平台每年11月11日举行“双十一”购物节,当天有多项优惠活动,深受广大消费者喜爱
(1)已知该网络购物平台近5年“双十”购物节当天成交额如下表:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
成交额(百亿元) | 9 | 12 | 17 | 21 | 27 |
求成交额(百亿元)与时间变量(记2015年为,2016年为,……依次类推)的线性回归方程,并预测2020年该平台“双十一”购物节当天的成交额(百亿元);
(2)在2020年“双十一”购物节前,某同学的爸爸、妈妈计划在该网络购物平台.上分别参加、两店各一个订单的“秒杀”抢购,若该同学的爸爸、妈妈在、两店订单“秒杀”成功的概率分别为、,记该同学的爸爸和妈妈抢购到的订单总数量为.
(i)求的分布列及;
(ii)已知每个订单由件商品构成,记该同学的爸爸和妈妈抢购到的商品总数量为,假设,,求取最大值时正整数的值.
附:回归方程中斜率和截距的最小二乘估计公式分别为:,.