题目内容
【题目】一个盒子中装有5张编号依次为1,2,3,4,5的卡片,这5张卡片除号码外完全相同,现进行有放回的连续抽取两次,每次任意地取出一张卡片.
(1)求出所有可能结果数,并列出所有可能结果;
(2)求事件“取出卡片的号码之和不小于7”的概率.
【答案】(1)见解析;(2)
【解析】
(1)先求出基本事件总数n=,再利用列举法列出所有可能结果;
(2)利用列举法求出“取出卡片的号码之和不小于7”包含的基础事件数,由此求出其概率.
(1)盒子中装有5张编号依次为1,2,3,4,5的卡片,这5张卡片除号码外完全相同,现进行有放回的连续抽取两次,每次任意地取出一张卡片,
基本事件总数n=5×5=25,所有可能结果为:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).
(2)“取出卡片的号码之和不小于7”包含的基本事件有:(2,5),(3,4),(3,5),(4,3),(4,4),(4,5),(5,2),(5,3),(5,4),(5,5),共有m=10个,
∴“取出卡片的号码之和不小于7”的概率
练习册系列答案
相关题目