题目内容
【题目】如图,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,将△ABD沿对角线BD折起,设折起后点A的位置为A′,使二面角A′—BD—C为直二面角,给出下面四个命题:①A′D⊥BC;②三棱锥A′—BCD的体积为;③CD⊥平面A′BD;④平面A′BC⊥平面A′DC.其中正确命题的个数是( )
A.1B.2C.3D.4
【答案】C
【解析】
根据,,,, 易得 ,再根据,平面平面,得平面,可判断③的正误;由二面角为直二面角,可得平面,则可求出,进而可判断②的正误;根据平面,有, 得平面,④利用面面垂直的判定定理判断④的正误;根据平面,有,若,则可证平面,则得到,与已知矛盾,进而可判断①的正误.
由题意,取中点,连接,则折叠后的图形如图所示:
由二面角为直二面角,可得平面,则,
=,②正确,
∵,,且,
∴平面,故③正确,
∵,由几何关系可得,,
∴,∴,
由平面,得,又
∴平面,∵平面,
∴ 平面平面,④正确,
平面,,若,则可证平面,则得到,与已知矛盾,所以①错误.
故选C.
【题目】某地随着经济的发展,居民收入逐年增长,经统计知年份x和储蓄
存款y (千亿元)具有线性相关关系,下表是该地某银行连续五年的储蓄存款(年底余额),
如下表(1):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
表(1)
为了研究计算的方便,工作人员将上表的数据进行了处理,令
得到下表(2):
时间代号t | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
表(2)
(1)由最小二乘法求关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的线性回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线的斜率和截距的最小二乘估计分别为,)