题目内容
【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1) 连结OE,证明OE∥PA,即证PA∥平面BDE.(2)先证明BD⊥平面PAC,再证明平面PAC⊥平面BDE.
(1)证明:连结OE,如图所示.
∵O,E分别为AC,PC的中点,
∴OE∥PA.
∵OE平面BDE,PA平面BDE,
∴PA∥平面BDE.
(2)证明:∵PO⊥平面ABCD,
∴PO⊥BD.
在正方形ABCD中,BD⊥AC.
又∵PO∩AC=O,
∴BD⊥平面PAC.
又∵BD平面BDE,
∴平面PAC⊥平面BDE.
练习册系列答案
相关题目
【题目】为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |
,;
B类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |
,;
C类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |
,;
(1)经计算己知A,B的相关系数分别为,.,请计算出C学生的的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为,利用线性回归直线方程预测该生第十次的成绩.
附相关系数,线性回归直线方程,,.