题目内容

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为aEPC的中点.

(1)求证:PA∥平面BDE

(2)求证:平面PAC⊥平面BDE

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1) 连结OE,证明OE∥PA,即证PA∥平面BDE.(2)先证明BD⊥平面PAC,再证明平面PAC⊥平面BDE.

(1)证明:连结OE,如图所示.

∵O,E分别为AC,PC的中点,

∴OE∥PA.

∵OE平面BDE,PA平面BDE,

∴PA∥平面BDE.

(2)证明:∵PO⊥平面ABCD,

∴PO⊥BD.

在正方形ABCD中,BD⊥AC.

又∵PO∩AC=O,

∴BD⊥平面PAC.

又∵BD平面BDE,

∴平面PAC⊥平面BDE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网