题目内容
(本题满分16分)设(1)请写出的表达式(不需证明);(2)求的极值(3)设的最大值为,的最小值为,求的最小值.
(1);(2)的极小值为;(3)当时,取得最小值
解析
(本小题满分14分)已知函数(Ⅰ)若,试确定函数的单调区间;(Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围;(Ⅲ)设函数,求证:.
(本题满分12分)已知函数f(x)=x3+ax2+(a+6)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是3,求a,b的值;(2)若f(x)为R上的单调递增函数,求a的取值范围.
(本题满分13分) 已知函数,函数(I)当时,求函数的表达式;(II)若,且函数在上的最小值是2 ,求的值;(III)对于(II)中所求的a值,若函数,恰有三个零点,求b的取值范围。
已知函数, (1)当时, 若有个零点, 求的取值范围;(2)对任意, 当时恒有, 求的最大值, 并求此时的最大值。
设函数。???(1)若函数是定义域上的单调函数,求实数的取值范围;???(2)求函数的极值点。
(本题满分12分)已知函数 (为非零常数,是自然对数的底数),曲线在点处的切线与轴平行.(1)判断的单调性;(2)若, 求的最大值.
已知函数(Ⅰ)求函数的单调区间和最小值;(Ⅱ)若函数在上是最小值为,求的值;(Ⅲ)当(其中="2.718" 28…是自然对数的底数).
(本题满分15分) 已知函数且在处取得极小值.(1)求m的值。(2)若在上是增函数,求实数的取值范围。