题目内容
已知函数, (1)当时, 若有个零点, 求的取值范围;(2)对任意, 当时恒有, 求的最大值, 并求此时的最大值。
(1) (2)最大值为2
解析
(本小题满分12分)已知函数.(Ⅰ)讨论函数在定义域内的极值点的个数;(Ⅱ)若函数在处取得极值,对,恒成立,求实数的取值范围;(Ⅲ)当且时,试比较的大小.
(本题满分12分) 已知a∈R,函数f(x)=4x3-2ax+a.(1)求f(x)的单调区间;(2)证明:当0≤x≤1时,f(x)+|2-a|>0.
设函数,(1)若函数在处与直线相切;①求实数的值;②求函数上的最大值;(2)当时,若不等式对所有的都成立,求实数的取值范围.
(本小题满分13分)已知,,,…,.(Ⅰ)请写出的表达式(不需证明);(Ⅱ)求的极小值;(Ⅲ)设,的最大值为,的最小值为,试求的最小值.
(本题满分16分)设(1)请写出的表达式(不需证明);(2)求的极值(3)设的最大值为,的最小值为,求的最小值.
设函数(Ⅰ) 当时,求函数的极值;(Ⅱ)当时,讨论函数的单调性. (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.
(本题满分13分)为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品. (Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损? (Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
(本大题12分)已知函数在上为单调递增函数.(Ⅰ)求实数的取值范围;(Ⅱ)若,,求的最小值.