题目内容
(本题满分12分)已知函数 (为非零常数,是自然对数的底数),曲线在点处的切线与轴平行.(1)判断的单调性;(2)若, 求的最大值.
(Ⅰ)在上是减函数.(Ⅱ)当时,的最大值为。
解析
(本小题满分12分)已知,在与时,都取得极值。(Ⅰ)求的值;(Ⅱ)若都有恒成立,求c的取值范围。
设函数,(1)若函数在处与直线相切;①求实数的值;②求函数上的最大值;(2)当时,若不等式对所有的都成立,求实数的取值范围.
(本题满分16分)设(1)请写出的表达式(不需证明);(2)求的极值(3)设的最大值为,的最小值为,求的最小值.
设函数(Ⅰ) 当时,求函数的极值;(Ⅱ)当时,讨论函数的单调性. (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.
(本小题满分14分)已知函数(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.
(本小题满分12分)已知函数.(1)当时,求的极值;(2)当时,试比较与的大小;(3)求证:().
已知函数f(x)=x2+lnx.(1)求函数f(x)的单调区间;(2)求证:当x>1时,x2+lnx<x3.
(本大题12分)已知函数在上为单调递增函数.(Ⅰ)求实数的取值范围;(Ⅱ)若,,求的最小值.