题目内容
6.若抛物线C1:y2=2px(p>0)的焦点F恰好是双曲C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,且它们的交点的连线过点F,则双曲线的离心率为( )A. | $\sqrt{2}+1$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}+1}}{2}$ |
分析 先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把$\frac{p}{2}$=c代入整理得c4-6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e.
解答 解:∵两条曲线交点的连线过点F,
∴两条曲线交点为($\frac{p}{2}$,p),
代入双曲线方程得$\frac{\frac{{p}^{2}}{4}}{{a}^{2}}-\frac{{p}^{2}}{{b}^{2}}=1$,
又$\frac{p}{2}$=c
代入化简得 c4-6a2c2+a4=0
∴e4-6e2+1=0
∴e2=3+2$\sqrt{2}$=(1+$\sqrt{2}$)2
∴e=$\sqrt{2}$+1
故选:A.
点评 本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:c2=a2+b2注意与椭圆的区别.
练习册系列答案
相关题目
20.已知定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x)为其导函数,且f(x)<f′(x)•tanx恒成立,则( )
A. | $\sqrt{3}f(\frac{π}{6})$<$f(\frac{π}{3})$ | B. | $\sqrt{3}f(\frac{π}{4})$>$\sqrt{2}f(\frac{π}{3})$ | C. | $\sqrt{2}f(\frac{π}{6})$>$f(\frac{π}{4})$ | D. | f(1)$<2f(\frac{π}{6})•sin1$ |
11.正方体ABCD-A1B1C1D1中,异面直线AA1与BC1所成的角为( )
A. | 60° | B. | 45° | C. | 30° | D. | 90° |
16.函数f(x)=log${\;}_{\frac{1}{2}}$(x2-4x+3)的递增区间是( )
A. | (-∞,1) | B. | (3,+∞) | C. | (2,+∞) | D. | (-∞,2) |