题目内容

9.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.2B.3C.$\frac{4}{3}$D.5

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.

解答 解:作出不等式组对应的平面区域,
$\frac{y}{x}$的几何意义为区域内的点到原点的斜率,
由图象知,OA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
故OA的斜率k=$\frac{3}{1}$=3.
故选:B

点评 本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网