题目内容
9.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值为( )A. | 2 | B. | 3 | C. | $\frac{4}{3}$ | D. | 5 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.
解答 解:作出不等式组对应的平面区域,
$\frac{y}{x}$的几何意义为区域内的点到原点的斜率,
由图象知,OA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
故OA的斜率k=$\frac{3}{1}$=3.
故选:B
点评 本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
18.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函数$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为( )
A. | $[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$ | B. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$ | ||
C. | $[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$ | D. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$ |