题目内容

【题目】函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段图象如图所示

(1)求f(x)的解析式;
(2)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数?

【答案】
(1)解:A=3

T=4π﹣ = ,即 = (4π﹣ )=5π

∴ω=

于是f(x)=3sin( x+φ),

又其图象过( ,0),

得sin( +φ)=0,φ=﹣

∴f(x)=3sin( x﹣


(2)解:由f(x+m)=3sin[ (x+m)﹣ ]=3sin( x+ )为偶函数(m>0)

=kπ+ ,即m= kπ+ ,k∈Z

∵m>0,

∴m=


【解析】(1)由图知A=3,由 T= ,可求ω,其图象过( ,0),可求φ;(2)由f(x+m)=3sin[ (x+m)﹣ ]为偶函数,可求得m= kπ+ ,k∈Z,从而可求m
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网