题目内容
【题目】已知直线的参数方程为: ,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.
(1)求直线和曲线C的普通方程;
(2)在直角坐标系中,过点B(0,1)作直线的垂线,垂足为H,试以为参数,求动点H轨迹的参数方程,并指出轨迹表示的曲线.
【答案】(1).(2)圆心在原点,半径为1的圆.
【解析】试题分析:(1)根据三角函数同角关系: 消参数得直线的普通方程,根据将曲线C的极坐标方程化为直角坐标方程,(2)先根据垂直关系求直线的垂线方程,再利用方程组解出垂足H坐标,最后根据三角函数同角关系: 消参数得动点H的普通方程,根据方程类型确定曲线形状.
试题解析:(1)由,
消去t得,直线的普通方程: .
由得, ,
即,得曲线C的普通方程: .
(2)∵直线的普通方程: ,又BH⊥,
∴直线BH的方程为,
由上面两个方程解得: ,
即动点H的参数方程为: 表示圆心在原点,半径为1的圆.
【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下图所示((吨)为买进蔬菜的质量, (天)为销售天数):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根据上表数据在下列网格中绘制散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店准备一次性买进25吨,则预计需要销售多少天.
参考公式: , .
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合计 | 1 |
(1)求出表中及图中的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.