题目内容
【题目】已知向量(cosx+sinx,1),(sinx,),函数.
(1)若f(θ)=3且θ∈(0,π),求θ;
(2)求函数f(x)的最小正周期T及单调递增区间.
【答案】(1)θ(2)最小正周期为π;单调递增区间为[kπ,kπ],k∈Z
【解析】
(1)计算平面向量的数量积得出函数f(x)的解析式,求出f(θ)=3时θ的值;
(2)根据函数f(x)的解析式,求出它的最小正周期和单调递增区间.
(1)向量(cosx+sinx,1),(sinx,),
函数
=sinx(cosx+sinx)
sinxcosx+sin2x
sin2xcos2x+2
=sin(2x)+2,
f(θ)=3时,sin(2θ)=1,
解得2θ2kπ,k∈Z,
即θkπ,k∈Z;
又θ∈(0,π),所以θ;
(2)函数f(x)=sin(2x)+2,
它的最小正周期为Tπ;
令2kπ≤2x2kπ,k∈Z,
kπ≤xkπ,k∈Z,
所以f(x)的单调递增区间为[kπ,kπ],k∈Z.
练习册系列答案
相关题目