题目内容

【题目】已知函数是偶函数.

1)求k的值;

2)若方程有实数根,求b的取值范围;

3)设,若函数的图象有且只有一个公共点,求实数a的取值范围.

【答案】(1)(2)(3)

【解析】

1)根据函数的奇偶性得 代入函数的解析式中,利用对数的运算法则得到 ;(2)将函数代入方程,将方程转化为两个函数交点的问题;通过判断函数 的单调性,得到其最小值,从而求得b的取值范围为 ;(3)由题意,两个函数图像有且只有一个公共点即方程有且只有一个实数根;通过讨论方程根的情况来求得参数的取值范围.

1)∵为偶函数,∴,有

恒成立.

恒成立,

恒成立,∴

2)由题意知,有实数根,即有解.

,则函数的图象与直线有交点,

,∴

b的取值范围是

3)由(1)知,

∴由题意知有且只有一个实数根.

,则,则关于t的方程*)有且只有一个正根.

,则,不合题意,舍去;

,则方程(*)的两根异号或方程有两相等正根.

方程(*)有两相等正根等价于,可解得

方程(*)的两根异号等价于,可解得

综上所述,实数a的取值范围是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网