题目内容
【题目】如图,矩形中,,为边的中点,将绕直线翻转成(平面),为线段的中点,则在翻折过程中,①与平面垂直的直线必与直线垂直;②线段的长恒为③异面直线与所成角的正切值为④当三棱锥的体积最大时,三棱锥外接球的体积是.上面说法正确的所有序号是( )
A.①②④B.①③④C.②③D.①④
【答案】A
【解析】
根据线面平行的判定定理,以及线面角的求解,棱锥外接球的求解,对选项进行逐一分析即可.
取的中点,的中点,连接,,,,显然//平面,故①正确;
,故②正确;
即为异面直线与所成角,,故③错误;
当三棱锥的体积最大时,则平面平面,
不妨取中点为,连接,则容易知平面,
因为,且,故可得,
又因为分别为中点,故可得,
故在中,.
因为三棱锥的底面为直角三角形,且为斜边上的中点,
故可得,又,
故为三棱锥外接球球心,且,故④正确,
综上,①②④正确,
故选:A.
【题目】如图,四棱锥O﹣ABCD的底面是边长为1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分别是OA、BC的中点.
(1)求证:直线MN∥平面OCD;
(2)求点M到平面OCD的距离.
【题目】某公司人数众多为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,按照男员工和女员工的比例分层抽样,得到名员工的月使用流量(单位:)的数据,其频率分布直方图如图所示.
(1)求的值,并估计这名员工月使用流量的平均值(同一组中的数据用中点值代表;
(2)若将月使用流量在以上(含)的员工称为“手机营销达人”,填写下面的列联表,能否有超过的把握认为“成为手机营销达人与员工的性别有关”;
男员工 | 女员工 | 合计 | |
手机营销达人 | 5 | ||
非手机营销达人 | |||
合计 | 200/span> |
参考公式及数据:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若这名员工中有名男员工每月使用流量在,从每月使用流量在的员工中随机抽取名进行问卷调查,记女员工的人数为,求的分布列和数学期望.