题目内容
【题目】在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“Z拓展”.如数列1,2第1次“Z拓展”后得到数列1,3,2,第2次“Z拓展”后得到数列1,4,3,5,2.设数列a,b,c经过第n次“Z拓展”后所得数列的项数记为Pn,所有项的和记为Sn.
(1)求P1,P2;
(2)若Pn≥2020,求n的最小值;
(3)是否存在实数a,b,c,使得数列{Sn}为等比数列?若存在,求a,b,c满足的条件;若不存在,说明理由.
【答案】(1)P1=5;P2=9.(2)n的最小值为10.(3)存在;a,b,c满足的条件为或者
【解析】
(1)因原数列有3项,经第1次拓展后增加两项,可得项数P1;经第2次拓展后增加4项,可得项数P2.
(2)因数列每一次拓展是在原数列的相邻两项中增加一项,由数列经第n次拓展后的项数为Pn,则经第n+1次拓展后增加的项数为Pn﹣1,可得Pn+1=Pn+(Pn﹣1)=2Pn﹣1,变形利用等比数列的通项公式即可得出.
(3)设第n次拓展后数列的各项为a,a1,a2,a3,…,am,c.可得Sn=a+a1+a2+a3+…+am+c,因数列每一次拓展是在原数列的相邻两项中增加这两项的和,可得Sn+1=a+(a+a1)+a1+(a1+a2)+a2+(a2+a3)+…+am+(am+c)+c,可得Sn+1=3Sn﹣(a+c),变形利用等比数列的通项公式即可得出.
(1)因原数列有3项,经第1次拓展后的项数P1=3+2=5;
经第2次拓展后的项数P2=5+4=9.
(2)因数列每一次拓展是在原数列的相邻两项中增加一项,
由数列经第n次拓展后的项数为Pn,则经第n+1次拓展后增加的项数为Pn﹣1,
所以Pn+1=Pn+(Pn﹣1)=2Pn﹣1
所以Pn+1﹣1=2Pn﹣2=2(Pn﹣1),
由(1)知P1﹣1=4,
所以,
由,即2n+1≥2019,解得n≥10
所以n的最小值为10.
(3)设第n次拓展后数列的各项为a,a1,a2,a3,…,am,c
所以Sn=a+a1+a2+a3+…+am+c
因数列每一次拓展是在原数列的相邻两项中增加这两项的和,
所以Sn+1=a+(a+a1)+a1+(a1+a2)+a2+(a2+a3)+…+am+(am+c)+c
即Sn+1=2a+3a1+3a2+…+3am+2c
所以Sn+1=3Sn﹣(a+c),
得
由S1=2a+3b+2c,则,
若使Sn为等比数列,则或
所以,a,b,c满足的条件为或者.
【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度y(单位:cm)的情况如下表:
M | 900 | 700 | 300 | 100 |
y | 0.5 | 3.5 | 6.5 | 9.5 |
该省某市2019年12月份AQI指数M的频数分布表如下:
M | |||||
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设,若x与y之间具有线性关系,试根据上述数据求出y关于x的线性回归方程;
(2)王先生在该市开了一家洗车店,洗车店每天的平均收入与AQI指数的相关关系如下表:
M | |||||
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
估计王先生的洗车店2019年12月份每天的平均收入.
附参考公式:,其中
【题目】某校高三(1)班在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早、晚读时间站起来大声诵读,为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成下表:
考试分数 | ||||||
频数 | 5 | 10 | 15 | 5 | 10 | 5 |
赞成人数 | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使测试优秀率为30%,则优秀分数线应定为多少分?
(2)依据第1问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,列出2×2列联表,并判断是否有90%的把握认为赞成与否的态度与成绩是否优秀有关系.
参考公式及数据:,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |