题目内容

8.已知集合An={(a1,a2,…an)|aj=0或1,j=1,2,…,n(n≥2)},对于U,V∈An,d(U,V)表示U和V中相对应的元素不同的个数,若给定U∈An,则所有的d(U,V)和为n2n-1

分析 易知An中共有2n个元素,分别记为vk(k=1,2,3,…,2n,v=(b1,b2,b3,…bn)bi=0的vk共有2n-1个,bi=1的vk共有2n-1个然后求和即可.

解答 解:易知An中共有2n个元素,分别记为vk(k=1,2,3,…,2n),
V=(b1,b2,b3,…,bn
∵bi=0的vk共有2n-1个,bi=1的vk共有2n-1个.
∴d(U,V)=2n-1(|a1-0|+|a1-1|+|a2-0|+a2-1|+|a3-0|+|a3-1|+…+|an-0|+|an-1|)=n×2n-1
∴d(U,V)=n×2n-1
故答案为:n×2n-1

点评 此题是个难题.本题是综合考查集合推理综合的应用,这道题目的难点主要出现在读题上,需要仔细分析,以找出解题的突破点.题目所给的条件其实包含两个定义,第一个是关于Sn的,其实Sn中的元素就是一个n维的坐标,其中每个坐标值都是0或者1,也可以这样理解,就是一个n位数字的数组,每个数字都只能是0和1,第二个定义d(U,V).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网