题目内容
【题目】如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,则BD的长为 .
【答案】
【解析】解:∵AD⊥AC,∴∠DAC=90°,
∴∠BAC=∠BAD+∠DAC=∠BAD+90°,
∴sin∠BAC=sin(∠BAD+90°)=cos∠BAD= ,
在△ABD中,AB=3 ,AD=3,
根据余弦定理得:BD2=AB2+AD2﹣2ABADcos∠BAD=18+9﹣24=3,
则BD= .
故答案为:
由∠BAC=∠BAD+∠DAC,∠DAC=90°,得到∠BAC=∠BAD+90°,代入并利用诱导公式化简sin∠BAC,求出cos∠BAD的值,在三角形ABD中,由AB,AD及cos∠BAD的值,利用余弦定理即可求出BD的长.
练习册系列答案
相关题目
【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中,.
为了预测印刷20千册时每册的成本费,建立了两个回归模型:,.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中选择的模型,求关于的回归方程,并预测印刷20千册时每册的成本费.
附:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:,.