题目内容
【题目】如图,已知四边形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分别为BE,BP,PC的中点.
(1)求证:平面ABE⊥平面GHF;
(2)求直线GH与平面PBC所成的角θ的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)通过证明BC⊥平面ABE,FH∥BC,证得FH⊥平面ABE,即可证得面面垂直;
(2)建立空间直角坐标系,利用向量方法求线面角的正弦值.
(1)由题:,AE⊥平面ABCD,BC平面ABCD,所以AE⊥BC,
四边形ABCD是正方形,AB⊥BC,AE与AB是平面ABE内两条相交直线,
所以BC⊥平面ABE,F,H分别为BP,PC的中点,所以FH∥BC,
所以FH⊥平面ABE,HF平面GHF,所以平面ABE⊥平面GHF;
(2)由题可得:DA,DC,DP两两互相垂直,所以以D为原点,DA,DC,DP为x,y,z轴的正方向建立空间直角坐标系如图所示:
,
所以,设平面PBC的法向量
,
,取
为平面PBC的一个法向量,
所以直线GH与平面PBC所成的角θ的正弦值.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某公司组织开展“学习强国”的学习活动,活动第一周甲、乙两个部门员工的学习情况统计如下:
学习活跃的员工人数 | 学习不活跃的员工人数 | |
甲 | 18 | 12 |
乙 | 32 | 8 |
(1)从甲、乙两个部门所有员工中随机抽取1人,求该员工学习活跃的概率;
(2)根据表中数据判断能否有的把握认为员工学习是否活跃与部门有关;
(3)活动第二周,公司为检查学习情况,从乙部门随机抽取2人,发现这两人学习都不活跃,能否认为乙部门第二周学习的活跃率比第一周降低了?
参考公式:,其中
.
参考数据:,
,
.