题目内容

11.设数列{an},{bn}满足an+1-an=bn,bn+1=2bn(其中n∈N*),a1≠b1,且b1≠0,若$[\begin{array}{l}{{a}_{n+4}}\\{{b}_{n+4}}\end{array}]$=M$[\begin{array}{l}{{a}_{n}}\\{{b}_{n}}\end{array}]$,则二阶矩阵M-1=$[\begin{array}{l}{1}&{-\frac{15}{16}}\\{0}&{\frac{1}{16}}\end{array}]$.

分析 通过数列相关各项之间的关系求出矩阵M,进而计算可得结论.

解答 解:∵bn+1=2bn
∴bn+4=16bn,bn+3=8bn,bn+2=4bn
∵an+1-an=bn
∴an+4=an+3+bn+3
=an+2+bn+2+bn+3
=an+1+bn+1+bn+2+bn+3
=an+bn+bn+1+bn+2+bn+3
=an+bn+2bn+4bn+8bn
=an+15bn
∵$[\begin{array}{l}{{a}_{n+4}}\\{{b}_{n+4}}\end{array}]$=M$[\begin{array}{l}{{a}_{n}}\\{{b}_{n}}\end{array}]$,
∴M=$[\begin{array}{l}{1}&{15}\\{0}&{16}\end{array}]$,
∵$[\begin{array}{l}{1}&{15}&{1}&{0}\\{0}&{16}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{1}&{-\frac{15}{16}}\\{0}&{16}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{1}&{-\frac{15}{16}}\\{0}&{1}&{0}&{\frac{1}{16}}\end{array}]$,
∴M=$[\begin{array}{l}{1}&{-\frac{15}{16}}\\{0}&{\frac{1}{16}}\end{array}]$,
故答案为:$[\begin{array}{l}{1}&{-\frac{15}{16}}\\{0}&{\frac{1}{16}}\end{array}]$.

点评 本题考查矩阵及逆矩阵,求出矩阵M是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网