题目内容
11.设数列{an},{bn}满足an+1-an=bn,bn+1=2bn(其中n∈N*),a1≠b1,且b1≠0,若$[\begin{array}{l}{{a}_{n+4}}\\{{b}_{n+4}}\end{array}]$=M$[\begin{array}{l}{{a}_{n}}\\{{b}_{n}}\end{array}]$,则二阶矩阵M-1=$[\begin{array}{l}{1}&{-\frac{15}{16}}\\{0}&{\frac{1}{16}}\end{array}]$.分析 通过数列相关各项之间的关系求出矩阵M,进而计算可得结论.
解答 解:∵bn+1=2bn,
∴bn+4=16bn,bn+3=8bn,bn+2=4bn,
∵an+1-an=bn,
∴an+4=an+3+bn+3
=an+2+bn+2+bn+3
=an+1+bn+1+bn+2+bn+3
=an+bn+bn+1+bn+2+bn+3
=an+bn+2bn+4bn+8bn
=an+15bn,
∵$[\begin{array}{l}{{a}_{n+4}}\\{{b}_{n+4}}\end{array}]$=M$[\begin{array}{l}{{a}_{n}}\\{{b}_{n}}\end{array}]$,
∴M=$[\begin{array}{l}{1}&{15}\\{0}&{16}\end{array}]$,
∵$[\begin{array}{l}{1}&{15}&{1}&{0}\\{0}&{16}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{1}&{-\frac{15}{16}}\\{0}&{16}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{1}&{-\frac{15}{16}}\\{0}&{1}&{0}&{\frac{1}{16}}\end{array}]$,
∴M=$[\begin{array}{l}{1}&{-\frac{15}{16}}\\{0}&{\frac{1}{16}}\end{array}]$,
故答案为:$[\begin{array}{l}{1}&{-\frac{15}{16}}\\{0}&{\frac{1}{16}}\end{array}]$.
点评 本题考查矩阵及逆矩阵,求出矩阵M是解决本题的关键,注意解题方法的积累,属于中档题.
A. | 120° | B. | 60° | C. | 150° | D. | 30° |
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
A. | 183 | B. | 132 | C. | 528 | D. | 732 |