题目内容
【题目】如图所示的几何体B-ACDE中,AB⊥AC,AB=4,AC=3,DC⊥平面ABC,EA⊥平面ABC,点M在线段BC上,且AM=.
(1)证明:AM⊥平面BCD;
(2)若点F为线段BE的中点,且三棱锥F-BCD的体积为1,求CD的长度.
【答案】(1)证明见解析(2)
【解析】
(1)证明,根据余弦定理得到,再根据勾股定理得到,得到证明.
(2))取的中点,的中点,连接,,证明平面,故点到平面的距离等于点到平面的距离,设,根据体积得到答案.
(1)平面,平面,.
在中,,,,.
由得,.
,,即.
,平面,平面,平面.
(2)取的中点,的中点,连接,,
,,点为线段中点,.
平面,平面,,,.
平面,平面,平面,
点到平面的距离等于点到平面的距离,
平面,平面.
设,则,,即长为.
练习册系列答案
相关题目
【题目】为了迎接2019年的高考,某学校进行了第一次模拟考试,其中五个班的考试成绩在500分以上的人数如下表,为班级,表示500分以上的人数
1 | 2 | 3 | 4 | 5 | |
20 | 25 | 30 | 30 | 25 |
(1)若给出数据,班级与考试成绩500以上的人数,满足回归直线方程,求出该回归直线方程;
(2)学校为了更好的提高学生的成绩,了解一模的考试成绩,从考试成绩在500分以上1,3班学生中,利用分层抽样抽取5人进行调研,再从选中的5人中,再选3名学生写出“经验介绍”文章,则选的三名学生1班一名,3班2名的概率.
参考公式:,.