题目内容
【题目】如图,在四棱锥中,底面,,,,为的中点,是上的点.
(1)若平面,证明:平面.
(2)求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出
,且,最后结合线面垂直的判定定理得出平面,即可证出平面.
(2)由(1)可知,,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.
(1)证明:因为,平面,平面,
所以平面,
因为平面,平面,所以可设平面平面,
又因为平面,所以.
因为平面,平面,
所以,从而得.
因为底面,所以.
因为,所以.
因为,所以平面.
综上,平面.
(2)解:由(1)可得,,两两垂直,以为原点,,,所在
直线分别为,,轴,建立如图所示的空间直角坐标系.
因为,所以,
则,,,,
所以,,,.
设是平面的法向量,
由取
取,得.
设是平面的法向量,
由得
取,得,
所以,
即的余弦值为.
练习册系列答案
相关题目