题目内容
过抛物线y2=2px(p>0)的焦点作倾斜角为30°的直线l与抛物线交于P,Q两点,分别作PP¢、QQ¢垂直于抛物线的准线于P¢、Q¢,若|PQ|=2,则四边形PP¢Q¢Q的面积为
A.1 | B.2 | C. | D.3 |
A
解析试题分析:如图F(,0),直线PQ方程为y= (x-),代入y2=2px整理得,
设,则="7p," ,
所以,
由2,得。所以梯形的高为=×=1,故四边形PP¢Q¢Q的面积为=1,故选A。
考点:本题主要考查抛物线的定义,直线与抛物线的位置关系,弦长公式。
点评:中档题,所得四边形是梯形,且上下底边和为PQ=2,因此,只需求梯形的高。通过联立方程组,应用韦达定理、弦长公式,达到解题目的。
练习册系列答案
相关题目
抛物线的焦点为,其上的动点在准线上的射影为,若是等边三角形,则的横坐标是( )
A. | B. | C. | D. |
若直线mx- ny = 4与⊙O: x2+y2= 4没有交点,则过点P(m,n)的直线与椭圆 的交点个数是 ( )
A.至多为1 | B.2 | C.1 | D.0 |
已知椭圆与双曲线有相同的焦点和,若是的等比中项,是与的等差中项,则椭圆的离心率是( )
A. | B. | C. | D. |
当a为任意实数时,直线恒过定点P,则过点P的抛物线的标准方程是( )
A.或 | B.或 |
C.或 | D.或 |
设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率e的取值范围是( )
A.e> | B.e> | C.1<e< | D.1<e< |
已知a,b为正常数,F1,F2是两个定点,且|F1F2|=2a(a是正常数),动点P满足|PF1|+|PF2|=a2+1,则动点P的轨迹是( )
A.椭圆 | B.线段 | C.椭圆或线段 | D.直线 |
椭圆+=1(a>b>0)的离心率是,则的最小值为( )
A. | B.1 | C. | D.2 |