题目内容

【题目】已知函数,的部分图象如图所示.

)求函数的解析式;

)求函数的单调递增区间.

【答案】(1);(2)).

【解析】

试题()根据图像与x轴的交点可求得,进而求得;然后根据函数图像过点(0)可得,过点(01)可得A2,即可求得解析式f (x)2sin(2x);()用换元法即可求得g(x)的单调递增区间是(k∈Z).

试题解析:()由题设图象知,周期,所以

因为点(0)在函数图象上,所以Asin(2×φ)0,即sin(φ)0.

又因为0φ,所以,从而φπ,即.

又点(01)在函数图象上,所以,得A2

故函数f (x)的解析式为f (x)2sin(2x)

)由

k∈Z

所以函数g(x)的单调递增区间是(k∈Z).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网