题目内容
【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 , =2 ,△DF1F2的面积为 .
(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.
【答案】
(1)解:设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,
由 =2 ,得|DF1|= = c,
从而 = |DF1||F1F2|= c2= ,故c=1.
从而|DF1|= ,由DF1⊥F1F2,得 = + = ,
因此|DF2|= ,
所以2a=|DF1|+|DF2|=2 ,故a= ,b2=a2﹣c2=1,
因此,所求椭圆的标准方程为 +y2=1;
(2)解:设圆心在y轴上的圆C与椭圆 +y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,
y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,
由(1)知F1(﹣1,0),F2(1,0),所以 =(x1+1,y1), =(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣ + =0,
由椭圆方程得1﹣ = ,即3 +4x1=0,解得x1=﹣ 或x1=0.
当x1=0时,P1,P2重合,此时题设要求的圆不存在;
当x1=﹣ 时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.
由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,
故圆C的半径|CP1|= |P1P2|= |x1|=
【解析】(1)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|= = ,|DF2|= ,从而可得2a=2 ,于是可求得椭圆的标准方程;(2)设圆心在y轴上的圆C与椭圆 +y2=1相交,P1(x1 , y1),P2(x2 , y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1 , y1=y2 , |P1P2|=2|x1|,
由F1P1⊥F2P2 , 得x1=﹣ 或x1=0,分类讨论即可求得圆的半径.
【题目】高二学生小严利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):
女性消费情况:
消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人数 | 5 | 10 | 15 |
男性消费情况:
消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人数 | 2 | 3 | 10 | 2 |
(1)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
女性 | 男性 | 总计 | |
网购达人 | |||
非网购达人 | |||
总计 |
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(,其中)
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位: ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得,其中为
抽取的第个零件的尺寸, .
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).
附:若随机变量服从正态分布,则, .