题目内容
【题目】如图,是半圆的直径,平面与半圆所在的平面垂直,,, ,是半圆上不同于,的点,四边形是矩形.
(Ⅰ)若,证明:平面;
(Ⅱ)若,求三棱锥体积的最大值.
【答案】(Ⅰ)详见解析;(Ⅱ).
【解析】
(Ⅰ)先证明平面,从而可得,过点作,垂足为,可得到,由勾股定理可得,从而可证.
(Ⅱ)过点作,垂足为,可得,由,作于,由(Ⅰ)知平面,则是三棱锥的高,当最大,即点与点重合时,三棱锥的体积最大,从而可求出答案.
(Ⅰ)∵平面与半圆所在的平面垂直,
∴平面平面,
又平面平面,,
∴平面
∵平面,
∴,
∵是半圆上一点,
∴,
又,
∴平面,
∵平面,
∴
∵四边形是矩形,
∴,
由,,,过点作,垂足为,
则,,
,,
∴,
∴
又,
∴平面
(Ⅱ)在平面内,作于,由(Ⅰ)知平面,
则是三棱锥的高,
∴当最大,即点与点重合时,三棱锥的体积最大,此时
∵,,过点作,垂足为,
则,,
∴,
∴三棱锥体积的最大值为.
【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自,,各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.
(3)在接受调查的人中,有人给这项活动打出的分数如下: , , , , , , , , , ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.