题目内容
10.如果方程(lgx)2+(lg7+log5)•lgx+lg7•lg5=0的两根为α,β,则α•β的值为$\frac{1}{35}$.分析 由题意知,lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7•lg5=0的两根,依据根与系数的关系得lgα+lgβ=-(lg7+lg5),再根据对数的运算性质可求得α•β的值.
解答 解∵方程lg2x+(lg7+lg5)lgx+lg7•lg5=0的两根为α、β,
∴lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7•lg5=0的两根,
∴lgα+lgβ=-(lg7+lg5),
∴lgαβ=-lg35,
∴α•β的值是$\frac{1}{35}$,
故答案为:$\frac{1}{35}$
点评 本题的考点是对数的运算性质,考查利用根系关系与对数的运算法则求值,求解本题的一个关键是意识到lgα,lgβ二次函数的两个根.
练习册系列答案
相关题目
20.已知复数z满足z(1-2i)=i,则复数对应的点在复平面对应的点位于 ( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
18.方程$\frac{2x+1}{{x}^{2}+2}$=log${\;}_{\frac{1}{2}}$x的解所在的区间是( )
A. | (0,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$) | D. | ($\frac{\sqrt{2}}{2}$,1) |
10.焦点在x轴上的椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4+k}$=1的离心率为$\frac{4}{5}$,则k的值为( )
A. | 21 | B. | $-\frac{181}{25}$ | C. | -$\frac{19}{25}$ | D. | $\frac{19}{25}$ |