题目内容

若不等式x>0,所确定的平面区域被直线分为面积相等的两部分,则k的值是(    )
A.1B. 2C.D.
A

分析:先画出不等式组 所表示的平面区域,求出平面区域的面积以及在直线y="kx+2" 一侧的面积;再结合平面区域被直线y="kx+2" 分为面积相等的两部分即可求出k的值.
解:不等式组所表示的平面区域为三角形ABC.
?.故点C().
?,故点D(
所以 SABD=×|AB|?xD=x2×=
SABC=×|AB|?xC=×2×=
又因为平面区域被直线y="kx+2" 分为面积相等的两部分
∴SABD=SABC=×,解得k=1.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网