题目内容

函数在定义域R内可导,若,且当时,,设则(     )
A.B.C.D.

分析:根据f(x)=f(2-x)求出(x)的图象关于x=1对称,又当x∈(-∞,1)时,(x-1)f′(x)<0,x-1<0,得到f′(x)>0,此时f(x)为增函数,根据增函数性质得到即可.
解:由f(x)=f(2-x)可知,f(x)的图象关于x=1对称,
根据题意又知x∈(-∞,1)时,f′(x)>0,此时f(x)为增函数,
x∈(1,+∞)时,f′(x)<0,f(x)为减函数,
所以f(3)=f(-1)<f(0)<f(),即c<a<b,
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网