题目内容
【题目】某疾病有甲、乙两种类型,对甲型患者的有效治疗只能通过注射药物Y,而乙型患者可以服药物A进行有效治疗,对该疾病患者可以通过药物A的临床检验确定甲型或乙型.检验的方法是:如果患者利用药物A完成第一个疗程有效,就可以确定是乙型;否则进行第二个疗程,如果完成第二个疗程有效,也可以确定是乙型,否则确定是甲型.为了掌握这种疾病患者中甲型、乙型所占比例,随机抽取100名患者作为样本通过药物A进行临床检验,检验结果是:样本中完成第二个疗程有效的患者是完成第一个疗程有效的患者的60%,且最终确定为甲型患者的有36人.
(1)根据检验结果,将频率视作概率,在利用药物A完成第一个疗程无效的患者中仼选3人,求其中甲型患者恰为2人的概率;
(2)该疾病的患者通过治疗,使血浆中某物质t的浓度降低到或更低时,就认为已经达到治愈指标.为了确定药物Y对甲型患者的疗效,需了解疗程次数x(单位:次)对患者血浆中t的浓度(单位:)的影响.在甲型患者中抽取一个有代表性的样本,利用药物Y进行5个疗程,每个疗程完成后对每个个体抽取相同容量的血浆进行分析,并对疗程数和每个疗程后样本血浆中t的平均浓度的数据作了初步处理,得到下面的散点图及一些统计量的值.
3 | 11.0 | 0.46 | 262.5 | 30.1 | 55 | 1.458 |
/span>
上表中,.
①根据散点图直接判断(不必说明理由),与哪一个适宜作为甲型患者血浆中t的平均浓度y关于疗程次数x的回归方程类型?并根据表中数据建立y关于x的回归方程.
②患者在享受基本医疗保险及政府专项补助后,自己需承担的费用z(单位:元)与x,y的关系为.在达到治愈指标的前提下,甲型患者完成多少个疗程自己承担的费用最低?
对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.
【答案】(1)(2)①适宜;②8个或9个
【解析】
(1)首先求出完成第一个疗程有效的患者人数,用频率视作概率,可知完成第一个疗程无效的患者是甲型患者的概率为,再根据二项分布的概率公式计算可得;
(2)①根据散点图可以判断,适宜作为甲型患者血浆中t的平均含量关于疗程次数的回归方程类型.,令,先建立y关于w的线性回归方程,根据所给数据求出回归方程,最后换元即可得到关于的回归方程;
②依题意可得,且,解得,则,最后根据对勾函数的性质计算可得;
解:(1)设样本中完成第一个疗程有效的患者人数为n,则,解得,则完成第一个疗程无效的患者人数为60人.
将频率视作概率,则利用药物A完成第一个疗程无效的患者是甲型患者的概率为.
在利用药物A完成第一个疗程无效的患者中任选3人,设其中是甲型患者的人数为,
则,.
所以.
所以所求的概率为
(2)①根据散点图可以判断,适宜作为甲型患者血浆中t的平均含量关于疗程次数的回归方程类型.
令,先建立y关于w的线性回归方程.
由,
.
所以y关于w的线性回归方程为,
因此y关于x的回归方程为.
②当达到治愈指标时,由,且,解得
注射药物Y治疗x个疗程时,患者自己需承担费用为:
.
令,易知在单调递减,在单调递增.
因为,且,
所以甲型患者完成8个或9个疗程时,能够达到治愈指标且自己承担的费用最低;
【题目】在脱贫攻坚中,某市教育局定点帮扶前进村户贫困户.驻村工作队对这户村民的贫困程度以及家庭平均受教育程度进行了调査,并将该村贫困户按贫困程度分为“绝对贫困户”与“相对贫困户”,同时按家庭平均受教育程度分为“家庭平均受教育年限年”与“家庭平均受教育年限年”,具体调査结果如下表所示:
平均受教育年限年 | 平均受教育年限年 | 总计 | |
绝对贫困户 | 10 | 40 | 50 |
相对贫困户 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
(1)为了参加扶贫办公室举办的贫困户“谈心谈话”活动,现通过分层抽样从“家庭平均受教育年限年”的户贫困户中任意抽取户,再从所抽取的户中随机抽取户参加“谈心谈话”活动,求至少有户是绝对贫困户的概率;
(2)根据上述表格判断:是否有的把握认为贫困程度与家庭平均受教育程度有关?
参考公式:
参考数据:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
【题目】下表是我国大陆地区从2013年至2019年国内生产总值(GDP)近似值(单位:万亿元人民币)的数据表格:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
中国大陆地区GDP: (单位:万亿元人民币) |
关于的线性回归方程(系数精确到);
(Ⅱ)党的十九大报告中指出:从2020年到2035年,在全面建成小康社会的基础上,再奋斗15年,基本实视社会主义现代化.若到2035年底我国人口增长为亿人,假设到2035年世界主要中等发达国家的人均国民生产总值的频率直方图如图所示.
以(Ⅰ)的结论为依据,预测我国在2035年底人均国民生产总值是否可以超过假设的2035年世界主要中等发达国家的人均国民生产总值平均数的估计值.
参考数据:,.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.