题目内容
已知数列
满足:
是数列
的前n项和.数列
前n项的积为
,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233647695.png)
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)是否存在常数a,使得
成等差数列?若存在,求出a,若不存在,说明理由;
(Ⅲ)是否存在
,满足对任意自然数
时,
恒成立,若存在,求出m的值;若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233554819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233585471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233601359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233647695.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233585471.png)
(Ⅱ)是否存在常数a,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233679562.png)
(Ⅲ)是否存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233710613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233741488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233757545.png)
(Ⅰ)
,
;(Ⅱ)不存在;(Ⅲ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233772565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233788500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233803415.png)
试题分析:(Ⅰ)由条件可得数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233585471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233647695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233881720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233897341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233585471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234115472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233679562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234162937.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233679562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233710613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233741488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234225535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234240382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233757545.png)
试题解析:(Ⅰ)由题知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234271632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234287821.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234303560.png)
即数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234349594.png)
∴当n为奇数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240302343811035.png)
当n为偶数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234427986.png)
∴对一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234443804.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234459515.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234474425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233881720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233897341.png)
∴对一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234552794.png)
(Ⅱ)由(Ⅰ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233772565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233523456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234599902.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240302346151594.png)
若存在常数a,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233679562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234162937.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234661517.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240302346771137.png)
∴不存在常数a 使数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233679562.png)
(Ⅲ)存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233803415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234240382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030233757545.png)
即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234240382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234225535.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234817382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234833665.png)
②假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234833412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234225535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234880536.png)
则当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234895452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240302349111490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234895452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234225535.png)
综合①②得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234225535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234240382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030234225535.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目