题目内容
已知,数列的前项和为,点在曲线上,且,.
(1)求数列的通项公式;
(2)数列的前项和为,且满足,,求数列的通项公式;
(3)求证:,.
(1)求数列的通项公式;
(2)数列的前项和为,且满足,,求数列的通项公式;
(3)求证:,.
(1);(2);(3)详见解析.
试题分析:(1)先根据函数的解析式,由条件“点在曲线上”上得出与之间的递推关系式,然后进行变形得到,于是得到数列为等差数列,先求出数列的通项公式,进而求出数列的通项公式;(2)根据(1)中的结果结合已知条件得到
,两边同时除以,得到,构造数列为等差数列,先求出数列的通项公式,然后求出,然后由与之间的关系求出数列的通项公式;(3)对数列中的项进行放缩法
,再利用累加法即可证明相应的不等式.
试题解析:(1)且,∴,
数列是等差数列,首项,公差,,
,;
(2)由,,
得,,
数列是等差数列,首项为,公差为,
∴,,当时,,
也满足上式,,;
(3),
.
练习册系列答案
相关题目