题目内容
【题目】已知函数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)若函数在区间上单调递增,求实数的取值范围;
(Ⅲ)设函数,其中.证明:的图象在图象的下方.
【答案】(1) .
(2) .
(3)证明见解析.
【解析】分析:(Ⅰ)求出函数的导数,计算和的值,点斜式求出切线方程即可.
(Ⅱ)设,并求导.将问题转化为在区间上,恒成立,或者恒成立,通过特殊值,且,确定恒成立,通过参数分离,求得实数的取值范围;
(Ⅲ)设,将问题转化为证明,利用函数的导数确定函数最小值在区间,并证明. 即的图象在图象的下方.
详解:解:(Ⅰ)求导,得,
又因为
所以曲线在点处的切线方程为
(Ⅱ)设函数,
求导,得,
因为函数在区间上为单调函数,
所以在区间上,恒成立,或者恒成立,
又因为,且,
所以在区间,只能是恒成立,即恒成立.
又因为函数在在区间上单调递减,,
所以.
(Ⅲ)证明:设.
求导,得.
设,则(其中).
所以当时,(即)为增函数.
又因为,
所以,存在唯一的,使得
且与在区间上的情况如下:
- | 0 | + | |
↘ | ↗ |
所以,函数在上单调递减,在上单调递增,
所以 .
又因为,,
所以,
所以,即的图象在图象的下方.
【题目】某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计(满分150分),其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:
(1)根据以上两个直方图完成下面的列联表:
性别 成绩 | 优秀 | 不优秀 | 总计 |
男生 | |||
女生 | |||
总计 |
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
附:,其中.
【题目】甲、乙两个篮球队在4次不同比赛中的得分情况如下:
甲队 | 88 | 91 | 92 | 96 |
乙队 | 89 | 93 | 9▓ | 92 |
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用表示.
(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当时,分别从甲、乙两队的4次比赛中各随机选取1次,记这2个比赛得分之差的绝对值为,求随机变量的分布列;
(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出的取值集合.(结论不要求证明)
【题目】现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | 3% |
超过1500元至4500元的部分 | 10% |
超过4500元至9000元的部分 | 20% |
超过9000元至35000元的部分 | 25% |
…… | … |
例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).
(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;
(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;
(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)