题目内容
【题目】某电影院共有个座位,某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人,1010人,2019人(同一所学校的学生既可看上午场,又可看下午场,但每人只能看一场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、下午在这个座位上坐的是同一所学校的学生,那么的可能取值有__________个.
【答案】12
【解析】分析:由题可知总的观影人数为人,则,而人数最多的学校有人,所以,综合上述即可求出可能的取值个数.
详解:由题可知,总的观影人数为人,上、下午各一场
所以,,
又可知
若存在上、下午坐的是同一所学校的学生的座位,则必有,
所以的范围是,,则的可能取值有个.
故答案为12.
【题目】某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计(满分150分),其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:
(1)根据以上两个直方图完成下面的列联表:
性别 成绩 | 优秀 | 不优秀 | 总计 |
男生 | |||
女生 | |||
总计 |
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
附:,其中.
【题目】甲、乙两个篮球队在4次不同比赛中的得分情况如下:
甲队 | 88 | 91 | 92 | 96 |
乙队 | 89 | 93 | 9▓ | 92 |
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用表示.
(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当时,分别从甲、乙两队的4次比赛中各随机选取1次,记这2个比赛得分之差的绝对值为,求随机变量的分布列;
(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出的取值集合.(结论不要求证明)