题目内容
设点是双曲线与圆在第一象限的交点,其中分别是双曲线的左、右焦点,若,则双曲线的离心率为______________.
试题分析:先由双曲线定义和已知求出两个焦半径的长,再由已知圆的半径为半焦距,知焦点三角形为直角三角形,从而由勾股定理得关于a、c的等式,求得离心率解:依据双曲线的定义:|PF1|-|PF2|=2a,又∵,即|PF1|=3|PF2|,∴|PF1|=3a,|PF2|=a,∵圆x2+y2=a2+b2的半径r=c,∴F1F2是圆的直径,∴∠F1PF2=90°在直角三角形F1PF2中由(3a)2+a2=(2c)2,得e=,故填写
点评:本题考查了双曲线的定义,双曲线的几何性质,离心率的求法
练习册系列答案
相关题目