题目内容
【题目】已知点A(0,2)为圆C:x2+y2﹣2ax﹣2ay=0(a>0)外一点,圆C上存在点P使得∠CAP=45°,则实数a的取值范围是( )
A.(0,1)
B.
C.
D.
【答案】B
【解析】解:化圆的方程为标准方程可得(x﹣a)2+(y﹣a)2=2a2 ,
∴圆的圆心为C(a,a),半径r= |a|,
∴AC= ,PC= |a|,
∵AC和PC长度固定,
∴当P为切点时,∠CAP最大,
∵圆C上存在点P使得∠CAP=45°,
∴若最大角度大于45°,则圆C上存在点P使得∠CAP=45°,
∴ = ≥sin∠CAP=sin45°= ,
整理可得a2+2a﹣2≥0,解得a≥ -1或a≤﹣ -1,
又 = ≤1,解得a≤1,
又点 A(0,2)为圆C:x2+y2﹣2ax﹣2ay=0外一点,
∴02+22﹣4a>0,解得a<1
∵a>0,∴综上可得 ﹣1≤a<1.
故选B.
练习册系列答案
相关题目
【题目】某省的一个气象站观测点在连续4天里记录的指数与当天的空气水平可见度(单位: )的情况如表1:
700 | ||||
0.5 | 3.5 | 6.5 | 9.5 |
该省某市2017年9月指数频数分布如表2:
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设,根据表1的数据,求出关于的线性回归方程;
(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与指数有相关关系,如表3:
日均收入(元) |
根据表3估计小李的洗车店9月份平均每天的收入.
(附参考公式: ,其中, )