题目内容

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )
A.
B.
C.
D.

【答案】B
【解析】解:由题意,|PF1|=2|PF2|,

由双曲线的定义可得,|PF1|﹣|PF2|=2a,

可得|PF1|=4a,|PF2|=2a

由四边形PF1MF2为平行四边形,

又∠MF2N=120°,可得∠F1PF2=120°,

在三角形PF1F2中,由余弦定理可得

4c2=16a2+4a2﹣24a2acos120°,

即有4c2=20a2+8a2,即c2=7a2

可得c= a,

即e= =

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网