题目内容
【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.
【答案】解:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴ , , .
设平面A1BC1的法向量为 ,平面B1BC1的法向量为 =(x2,y2,z2).
则 ,令y1=4,解得x1=0,z1=3,∴ .
,令x2=3,解得y2=4,z2=0,∴ .
= = = .
∴二面角A1﹣BC1﹣B1的余弦值为 .
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,
∴ = , =(0,3,﹣4),
∵ ,∴ ,
∴ ,解得t= .
∴ .
【解析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,利用向量垂直于数量积得关系即可得出.
【考点精析】通过灵活运用直线与平面垂直的判定,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.