题目内容

【题目】在直角坐标系中,定义两点P(x1 , y1),Q(x2 , y2)之间的“直角距离”为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有下列命题:
①已知P(1,3),Q(sin2α,cos2α)(α∈R),则d(P,Q)为定值;
②原点O到直线x﹣y+1=0上任一点P的直角距离d(O,P)的最小值为
③若|PQ|表示P、Q两点间的距离,那么|PQ|≥ d(P,Q);
④设A(x,y)且x∈Z,y∈Z,若点A是在过P(1,3)与Q(5,7)的直线上,且点A到点P与Q的“直角距离”之和等于8,那么满足条件的点A只有5个.
其中的真命题是 . (写出所有真命题的序号)

【答案】①③④
【解析】解:①已知P(1,3),Q(sin2α,cos2α)(α∈R),则d(P,Q)=|1﹣sin2α|+|3﹣cos2α|=cos2α+2+sin2α=3为定值,正确;
②设P(x,y),O(0,0),则d(0,P)=|x1﹣x2|+|y1﹣y2|=|x|+|y|=|x|+|x+1|,表示数轴上的x到1和0的距离之和,其最小值为1,故不正确;
③若|PQ|表示P、Q两点间的距离,那么|PQ|= ,d(P,Q)=|x1﹣x2|+|y1﹣y2|,因为2(a2+b2)≥(a+b)2 , 所以|PQ|≥ d(P,Q),正确;
④过P(1,3)与Q(5,7)的直线方程为y=x+2,点A到点P与Q的“直角距离”之和等于8,则|x﹣1|+|y﹣3|+|x﹣5|+|y﹣7|=2|x﹣1|+2|x﹣5|=8,所以|x﹣1|+|x﹣5|=4,所以1≤x≤5,因为x∈Z,所以x=1,2,3,4,5,所以满足条件的点A只有5个,正确.
所以答案是:①③④.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网