题目内容
【题目】某企业为了提高企业利润,从2014年至2018年每年都对生产环节的改进进行投资,投资金额(单位:万元)与年利润增长量(单位:万元)的数据如表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额/万元 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
年利润增长量/万元 | 6.0 | 7.0 | 9.0 | 11.0 | 12.0 |
(1)记年利润增长量投资金额,现从2014年至2018年这5年中抽出两年进行调查分析,求所抽两年都是万元的概率;
(2)请用最小二乘法求出关于的回归直线方程;如果2019年该企业对生产环节改进的投资金额为10万元,试估计该企业在2019年的年利润增长量为多少?
参考公式:,;
参考数据:,.
【答案】(1); (2)该企业在该年的年利润增长量大约为15.4万元.
【解析】
(1)利用列举法列举出年中抽出两年的基本事件总数,然后求得其中两年都是的基本事件数,根据古典概型概率计算公式,计算出所求的概率.
(2)利用回归直线方程计算公式,计算出回归直线方程,并将代入回归直线方程,求得年利润增长量的估计值.
(1)2014年至2018年的分别记为:,,,,,
抽取两年的基本事件有:
,,,,,,,,,,共10种,
其中两年都是的基本事件有:,,,共3种,
故所求概率为.
(2),,
则,
所以回归直线方程为,将代入上述方程得,
即该企业在该年的年利润增长量大约为15.4万元.
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:,.