题目内容
【题目】在直角坐标系中,圆的参数方程为为参数),直线经过点,且倾斜角为.
(1)写出直线的参数方程和圆的标准方程;
(2)设直线与圆相交于两点,求的值.
【答案】(1)(t为参数),;(2)12.
【解析】
(1)根据参数方程与普通方程的互化可得到圆的直角坐标方程,由直线的参数方程的写法得到直线的参数方程;(2);联立直线的参数方程和圆的普通方程,得到|PA|·|PB|=|t1t2|可得到结果.
(1)把圆C的参数方程 (θ为参数)化为直角坐标方程为x2+y2=25.
由条件可得直线l的参数方程为即 (t为参数).
(2)把直线l的参数方程代入圆C的方程化简可得t2+(3+2)t-12=0,
所以t1t2=-12,故|PA|·|PB|=|t1t2|=12.
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
则下列说法正确的是( )
A.有以上的把握认为“爱好该项运动与性别无关”
B.有以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .