题目内容
【题目】已知函数f(x)=+x在x=1处的切线方程为2x﹣y+b=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)若函数g(x)=f(x)+x2﹣kx,且g(x)是其定义域上的增函数,求实数k的取值范围.
【答案】(1) a=1,b=﹣1;(2) k≤3.
【解析】试题分析:(1)由切线方程,布列方程组,解之即可;(2)g(x)在其定义域(0,+∞)上是增函数,即g′(x)≥0在其定义域上恒成立,变量分离求最值即可.
试题解析:
(Ⅰ)∵f(x)=+x,
∴f′(x)=+1,
∵f(x)在x=1处的切线方程为2x﹣y+b=0,
∴+1=2, 2﹣1+b=0, ∴a=1,b=﹣1;
(Ⅱ)f(x)=lnx+x,g(x)=x2﹣kx+lnx+x,
∴g′(x)=x﹣k++1,
∵g(x)在其定义域(0,+∞)上是增函数,∴g′(x)≥0在其定义域上恒成立,
∴x﹣k++1≥0在其定义域上恒成立 ∴k≤x++1在其定义域上恒成立,
而x++1≥2+1=3,当且仅当x=1时“=”成立, ∴k≤3.
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;
平均车速超过 人数 | 平均车速不超过 人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(Ⅱ )以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式: ,其中.
参考数据:
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |