题目内容
【题目】已知是定义在上的奇函数,且时, ,则函数(为自然对数的底数)的零点个数是( )
A. 0 B. 1 C. 2 D. 3
【答案】C
【解析】
当时,函数求导可得,则函数在上单调递增,在上单调递减,当时函数有极大值为 ,根据奇函数的对称性,作出其函数图像如图,由函数图像可知与有两个不同交点,则 有两个零点.故本题选.
点睛:本题主要考查函数的奇偶性,单调性,指数函数的图像与性质,及数形结合的数学思想方法.函数的零点问题,方程解的个数问题一般转化为两个常见的函数图像的交点个数问题来解决.要能熟练掌握几种基本函数图像,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图像.能利用函数的相关性质作出函数的草图.
练习册系列答案
相关题目
【题目】(本小题满分12分)
甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
班级与成绩列联表
优 秀 | 不优秀 | |
甲 班 | 10 | 35 |
乙 班 | 7 | 38 |
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |