题目内容
【题目】已知直线l:y=ax+1﹣a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有( )
A.①④
B.②③
C.②④
D.②③④
【答案】D
【解析】解:①由直线y=ax+1﹣a,可知此直线过点A(1,1),y=﹣2|x﹣1|= ,
如图所示,直线l与函数y=﹣2|x﹣1|的图象只能由一个交点,故不是“绝对函数”;
②y=x2与l:y=ax+1﹣a联立 解得 或 ,
此两个交点的距离 =|a|,化为(a﹣2)2(1+a2)﹣a2=0,
令f(a)=(a﹣2)2(1+a2)﹣a2 , 则f(1)=2﹣1=1>0,f(2)=0﹣4<0,因此函数f(a)在区间(1,2)内存在零点,即方程(a﹣2)2(1+a2)﹣a2=0,有解.
故此函数是“绝对函数”;
③(x﹣1)2+(y﹣1)2=1是以(1,1)为圆心,1为半径的圆,此时直线l总会与此圆由两个交点,且两个交点的距离是圆的直径2,∴存在a=±2满足条件,故此函数是“绝对函数”;
④把直线y=ax+1﹣a代入x2+3y2=4得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0,
∴ , .
若直线l被椭圆截得的弦长是|a|,则 = ,
化为 ,
令f(a)= ,而f(1)= ,f(3)= .
∴函数f(a)在区间(1,3)内有零点,即方程f(a)=0有实数根,而直线l过椭圆上的定点(1,1),当a∈(1,3)时,直线满足条件,即此函数是“绝对函数”.
综上可知:能满足题意的曲线有②③④.
故选D.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】为了解我市高二年级进行的一次考试中数学成绩的分布状况,有关部门随机抽取了一个样本,对数学成绩进行分组统计分析如下表:
(1)求出表中m、n、M,N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图:
分组 | 频数 | 频率 |
[0,30) | 3 | 0.03 |
[30,60) | 3 | 0.03 |
[60,90) | 37 | 0.37 |
[90,120) | m | n |
[120,150) | 15 | 0.15 |
合计 | M | N |
(2)若我市参加本次考试的学生有18000人,试估计这次测试中我市学生成绩在90分以上的人数;
(3)为了深入分析学生的成绩,有关部门拟从分数不超过60的学生中选取2人进行进一步分析,求被选中2人分数均不超过30分的概率.