题目内容
【题目】△ABC的三角A,B,C的对边分别为a,b,c满足(2b﹣c)cosA=acosC.
(1)求A的值;
(2)若a=2,求△ABC面积的最大值;
(3)若a=2,求△ABC周长的取值范围.
【答案】
(1)解:将(2b﹣c)cosA=acosC代入正弦定理得:
(2sinB﹣sinC)cosA=sinAcosC,
即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sinB,
由B∈(0,180°),得到sinB≠0,
所以cosA= ,又A∈(0,180°),
则A的度数为60°
(2)解:∵a=2,A=60°,
∴由余弦定理a2=b2+c2﹣2bccosA,得
4=b2+c2﹣2bccos60°,即b2+c2﹣bc=4
∴b2+c2=4+bc≥2bc,可得bc≤4
又∵△ABC的面积S= bcsinA= bc≤
∴当且仅当b=c=2时,△ABC的面积的最大值为 ,此时△ABC是等边三角形
(3)解:由题意,b>0,c>0,b+c>a=2,
∴由余弦定理4=b2+c2﹣2bccos60°=(b+c)2﹣3bc≥ (b+c)2(当且仅当b=c时取等号),
∴b+c≤4,
∵b+c>2,
∴2<b+c≤4,
∴△ABC的周长的取值范围为(4,6]
【解析】(1)利用正弦定理化简已知的等式,再利用两角和的正弦函数公式及诱导公式化简,根据sinB不为0,得到cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.(2)由余弦定理a2=b2+c2﹣2bccosA的式子,得到b2+c2﹣bc=4,结合基本不等式求出bc≤4,再用正弦定理的面积公式算出当且仅当b=c=2时,△ABC的面积的最大值为 .(3)利用余弦定理结合基本不等式,可求△ABC的周长的取值范围.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:.
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.
【题目】为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:
月工资 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
男员工数 | 1 | 8 | 10 | 6 | 4 | 4 |
女员工数 | 4 | 2 | 5 | 4 | 1 | 1 |
(1)试由图估计该单位员工月平均工资;
(2)现用分层抽样的方法从月工资在[45,55)和[55,65)的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在[25,35)和[45,55)两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.