题目内容
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.
参考公式:,其中.
参考数据:
【答案】(1)不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.
(2)①;②;.
【解析】试题分析:(1)计算的值,进而可查表下结论;
(2)①由分层抽样的抽样比计算即可;
②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为,由题意得.
试题解析:
(1)由列联表可知的观测值, .
所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.
(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),
偶尔或不用网络外卖的有(人).
则选出的3人中至少有2人经常使用网络外卖的概率为.
②由列联表,可知抽到经常使用网络外卖的网民的频率为,
将频率视为概率,即从市市民中任意抽取1人,
恰好抽到经常使用网络外卖的市民的概率为.
由题意得,
所以;
.
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.