题目内容
【题目】已知函数f(x)=xex﹣ae2x(a∈R)恰有两个极值点x1 , x2(x1<x2),则实数a的取值范围为 .
【答案】(0, )
【解析】解:函数f(x)=xex﹣ae2x可得f′(x)=ex(x+1﹣2aex),要使f(x)恰有2个极值点,
则方程x+1﹣2aex=0有2个不相等的实数根,
令g(x)=x+1﹣2aex , g′(x)=1﹣2aex;
(i)a≤0时,g′(x)>0,g(x)在R递增,不合题意,舍,
(ii)a>0时,令g′(x)=0,解得:x=ln ,
当x<ln 时,g′(x)>0,g(x)在(﹣∞,ln )递增,且x→﹣∞时,g(x)<0,
x>ln 时,g′(x)<0,g(x)在(ln ,+∞)递减,且x→+∞时,g(x)<0,
∴g(x)max=g(ln )=ln +1﹣2a =ln >0,
∴ >1,即0<a< ;
所以答案是:(0, ).
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
练习册系列答案
相关题目