题目内容
【题目】在平面直角坐标系xOy中,曲线C的方程为y=3+ .
(1)写出曲线C的一个参数方程;
(2)在曲线C上取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的周长的取值范围.
【答案】
(1)解:曲线C的方程为y=3+ .
化简可得:(y﹣3)2=﹣x2+8x﹣15,(y≥3,3≤x≤5)
即:x2+y2﹣8x﹣6y+24=0,
可知圆心为(4,3),半径r=1,
曲线C的一个参数方程为: (θ为参数)
(2)解:由(1)可知曲线C圆心为(4,3),半径r=1,(y≥3,3≤x≤5)的半圆.
设一点P的参数坐标为(4+cosθ,3+sinθ)(0≤θ≤π),
过点P作x轴,y轴的垂线,垂足分别为A,B,
∴|PA|=3+sinθ,|PB|=4+cosθ
∴矩形OAPB的周长l=2|PA|+2|PB|=2|3+sinθ+4+cosθ|=2[7+ sin( )],(0≤θ≤π)
当θ= 时,周长l最大为14+2 .
当θ=π时,周长l最小为12.
故得矩形OAPB的周长的取值范围是[12, ]
【解析】(1)采用平方法,化简曲线C,根据x=ρcosθ,y=ρsinθ即可得曲线C的一个参数方程;(2)由(1)可知曲线C,曲线C上取一点P的参数坐标,利用三角函数的有界限求解矩形OAPB的周长的取值范围
练习册系列答案
相关题目