题目内容
【题目】如图所示,已知抛物线,过点任作一直线与相交于两点,过点作轴的平行线与直线相交于点为坐标原点).
(1)证明: 动点在定直线上;
(2)作的任意一条切线 (不含轴), 与直线相交于点与(1)中的定直线相交于点.
证明: 为定值, 并求此定值.
【答案】(1)证明见解析;(2)证明见解析, .
【解析】试题分析:(1)依题意可设的方程为,代人,得即,设,则有,直线的方程为的方程为,解得交点的坐标,利用,即可求得点在定直线上;(2)依据题意得,切线的方程为,代入得即.由得,分别令得得的坐标为,从而可知为定值.
试题解析:(1)依题意可设的方程为,代人,得,
即,设,则有,
直线的方程为的方程为,解得交点的坐标为,
注意到及,则有,
因此点在定直线上.
(2)依题意,切线的斜率存在且不等于.
设切线的方程为,代人得,即.
由得,化简整理得.故切线的方程可写为.
分别令,得的坐标为,
则,即为定值.
练习册系列答案
相关题目
【题目】为贯彻落实教育部等6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定矩形春季校园足球联赛,为迎接此次联赛,甲同学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录如下表:
身高() | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人数 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)请计算这20名学生的身高中位数、众数,并补充完成下面的茎叶图;
(2)身高为185和188的四名学生分别为,,,,先从这四名学生中选2名担任正副门将,请利用列举法列出所有可能情况,并求学生入选正门将的概率.