题目内容
6.设椭圆$\frac{x^2}{m^2}+\frac{y^2}{{{m^2}-1}}$=1(m>1)上一点到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{3}{4}$ |
分析 利用椭圆的定义求出a,然后求出椭圆的方程,即可求解离心率.
解答 解:椭圆$\frac{x^2}{m^2}+\frac{y^2}{{{m^2}-1}}$=1(m>1)上一点到其左焦点的距离为3,到右焦点的距离为1,
由椭圆的定义可得:2a=4,a=2,
椭圆方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,则c=1,
椭圆的离心率为:$\frac{1}{2}$.
故选:B.
点评 本题考查椭圆的简单性质的应用,椭圆的定义以及椭圆方程的求法,基本知识的考查.
练习册系列答案
相关题目
16.已知点A(0,2),抛物线C:y2=ax,(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:$\sqrt{5}$,则a的值等于( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 4 |
17.某环保部门对甲、乙两类A型品牌车各抽取5辆进行CO2排放量检测,记录如下(单位:g/km).
经测算发现,乙品牌车CO2排放量的平均值为$\overline{{x}_{乙}}$=120g/km.
(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO2排放量超过130(g/km)的概率是多少?
(Ⅱ)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | y | 160 |
(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO2排放量超过130(g/km)的概率是多少?
(Ⅱ)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.
11.若向量$\overrightarrow a,\vec b$满足$|{\vec a}|=1,|{\vec b}|=2$且$|{2\vec a+\vec b}|=2\sqrt{3}$,则向量$\overrightarrow a,\vec b$的夹角为( )
A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
18.已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )
A. | 123 | B. | 105 | C. | 95 | D. | 23 |