题目内容

19.解不等式$\frac{{x}^{2}-2x-1}{x-1}$≥0.

分析 原不等式等价于$\left\{\begin{array}{l}{x-1>0}\\{{x}^{2}-2x-1≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x-1<0}\\{{x}^{2}-2x-1≤0}\end{array}\right.$,分别解不等式组取并集可得.

解答 解:原不等式等价于$\left\{\begin{array}{l}{x-1>0}\\{{x}^{2}-2x-1≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x-1<0}\\{{x}^{2}-2x-1≤0}\end{array}\right.$,
解不等式组$\left\{\begin{array}{l}{x-1>0}\\{{x}^{2}-2x-1≥0}\end{array}\right.$可得{x|x≥1+$\sqrt{2}$}
解不等式组$\left\{\begin{array}{l}{x-1<0}\\{{x}^{2}-2x-1≤0}\end{array}\right.$可得{x|x≤1-$\sqrt{2}$},
综合可得原不等式的解集为{x|x≥1+$\sqrt{2}$或x≤1-$\sqrt{2}$}

点评 本题考查分式不等式的解集,转化为不等式组是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网